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Figure 9. The crushed stone testing frame. 

5 CONCLUSIONS 

Fourteen years after the completion of the renova-
tion, the visual appearance of the Vilnius Cathedral 
Square pavement confirms the success of proposed 
method for reinforcement. 

Detailed careful leveling of the pavement surface 
before renovation can be used as performance based 
design in old towns when soil treatment is not al-
lowed. 

ACKNOWLEDGEMENT 

The authors would like to thank the then Vilnius 
Mayor Rolandas Paksas for supporting the idea of 
steel soil subsidence resistant reinforcement and Pro-
ject Head Engineer Arnoldas Daškus for understand-

ing the complexities of the Cathedral ground subsid-
ence problem. 

REFERENCES 

BS8006, 1995. Code of Practice for Strengthened/Reinforced Soils 
and Other Fills, British Standards Institution, London. 
Gasparavičienė, S. 1998. Apie 1937 m. R. Guto Vilniaus Katedros 
aikštės rekonstrukcijos projektą. Koncepcija, alternatyvos, įgyven-
dinimas, Kultūros paminklai 5, 126-131. (in Lithuanian) 
Gasparavičienė, S. 2000. Katedros aikštė Vilniuje. Istorinė ir ur-
banistinė raida. Statyba ir architektūra 9-10, 10-13. (in Lithuanian) 
Gudynaitė, B., Zilinskas. R., 2000. Architektūros tyrimai Vilniaus 
Katedros aikštėje 1998-1999 m., Kultūros paminklai, Vilnius, 7, 
109-119. (in Lithuanian) 
Katalynas, K. 1999. Archeologiniai tyrimai Vilniuje, Katedros ai-
kštėje 1998 m. Ataskaita (1 dalis), Vilnius. (in Lithuanian) 
Katilius, A. 2000. Katedros aikštės sutvarkymo projektas, Statyba 
ir architektūra 9-10, 14-16. (in Lithuanian) 
Kitkauskas, N. 2012. Vilniaus pilys: istorija, statyba, Mokslo ir 
enciklopedijų leidybos centras, Vilnius. (in Lithuanian) 
Žemkalnis- Landsbergis, V. 1940. Apie Vilnių ir jo patvarkymą, 
Naujoji Romuva, 1-2, 8-9 (in Lithuanian) 
Monstvilas, K., Kitkauskas, N. & Trumpis, G. 1995. Foundations 
of Vilnius Cathedral and of the Grand Dukes’ Palace and the in-
vestigations of their ground. Baltic Geotechnics ‘95 – Proceedings 
of the 8th Baltic Geotechnical Conference (Ed: Furmonavičius, L), 
5-10. A.A.Balkema, Rotterdam, Brookfield.  
Novickas, A. 2007. Naujausi Vilniaus senamiesčio aikščių menin-
io pavidalo pokyčiai: Semantinis Aspektas, Town Planning and 
Architecture 31:1, 12-17. (in Lithuanian) 
Piling Handbook, 2008 Arcelor Mittal Commercial RPS. 
http://sheetpiling.arcelormittal.com/uploads/files/ArcelorMittal%2
0Piling%20Handbook_rev08.pdf.

 

Estimation of elastic and non-linear stiffness 
coefficients for suction caisson foundations  
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ABSTRACT  This paper investigates the stiffness of suction caisson foundations both in the elastic domain and when considering material 
and interface nonlinearities. First, at small strains, expressions from the literature are used to identify the stiffness matrix of a solid embed-
ded foundation. Following, expressions for the stiffness components of flexible skirted foundations are engendered for variations in the 
characteristics of the system normalized by a parameter that produces unique stiffness values. The second part of the paper involves the in-
vestigation of the stiffness of the system in the large-strain domain. Both full contact conditions as well as the assumption of interfaces are 
examined and corresponding charts are produced that allow the calculation of the reduction in the stiffness components with increasing ro-
tation and displacement.  

 
RÉSUMÉ  Cet article étudie la rigidité des fondations caissons à succion à la fois dans le domaine élastique et lors de l'examen des non-
linéarités de matériel et d'interface. Tout d'abord, en petites déformations, des expressions de la littérature sont utilisées pour identifier la 
matrice de rigidité d'une fondation solide encastrée. À la suite, des expressions pour les composantes de rigidité de fondations flexibles de 
caissons sont engendrées pour des variations dans les caractéristiques du système. Les expressions sont normalisées par un paramètre qui 
produit des valeurs de rigidité unique. La deuxième partie de l'article implique l'examen de la rigidité du système dans le domaine de 
grandes déformations. Des conditions de contact complet sont examinées et des graphiques correspondants sont réalisés permettant le cal-
cul de la réduction des composants de rigidité avec l'augmentation de la rotation et du déplacement. 
 

1 PREFACE 

Various publications in the past decades have tackled 
the subject of elastic static or dynamic stiffnesses for 
various foundation shapes and types [i.e. Poulos & 
Davis, 1974; Gazetas, 1983, 1987, 1991; Roesset, 
1980; Doherty & Deeks, 2003, 2005; Doherty et al., 
2005]. Recently, a methodology including the geo-
metrical and material nonlinearities for the case of a 
surface footing lying on an undrained soil stratum 
was introduced by Gazetas et al. [2012], in which the 
effective nonlinear rocking stiffness of the system is 
estimated. Through an iterative procedure, the pro-
posed method provides an accurate prediction of the 
foundation response in the large strain domain.  

Far more little work has been conducted to define 
the elastic let alone the nonlinear stiffness coeffi-
cients of a suction caisson. Just recently, Doherty et 
al. [2005] estimated the purely elastic stiffness coef-
ficients for various cases of skirt embedment, Pois-
son's ratio as well as skirt flexibility.  

2 ELASTIC STIFFNESSES OF A SUCTION 
CAISSON 

2.1 Modified elastic stiffness coefficients for 
Circular Solid Embedded Foundations 

The expressions that have been formed in previous 
works for embedded foundations are all for a refer-
ence point at the bottom of the foundation. In produc-
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ing relationships between embedded and skirted 
foundations, this would be inconvenient since the 
skirts are also flexible and the relative position of the 
reference point (with the exception of fully rigid 
skirts) would change depending on the degree of 
flexibility. Thus, the first step in deducing these ex-
pressions must be the translation of the load refer-
ence point to the top of the foundation, which is rigid 
in all cases. 

In Figure 1, the absolute displacement of the refer-
ence point at the top as well as the transformed mo-
ment is shown for small rotations of the solid founda-
tion. 
 

 
Figure 1. Change in absolute displacement and moment if the load 
reference point is taken at the top of the foundation 
 

Below, expressions of the stiffness matrix will be 
used in conjunction with the moment and displace-
ment definitions from Figure 1 to deduce the same 
expressions for a change in the load reference point 
to the top of the foundation. The subscript b denotes 
that the variable refers to the bottom of the founda-
tion, whereas the subscript  t refers to the top. Since 
the vertical stiffness clearly remains the same wher-
ever the reference point is taken, it will not be added 
to the operations below. 
 
             (1) 
             (2) 
           (    ) (3) 
            (    ) (4) 
 

The signs of the cross-coupling stiffness coeffi-
cients have been chosen so as to ensure that the cou-
pling terms will have a positive value. Therefore, 
when referring to the top, when a horizontal force 
acts on it, the foundation tends to rotate and an oppo-
site-direction moment must be applied to resist this 

rotation; thus the coupling term will have a negative 
sign. In the same manner the positive sign was taken 
for the coupling term at the base of the foundation. 
Three additional equations are needed to define the 
horizontal and rocking stiffness coefficients as well 
as the coupling term at the top of the caisson; one 
equation that can help in this transformation is that 
relating the moment at the top (Mt) to the moment 
(Mb) and shear force (Hb) at the bottom of the foun-
dation: 
 
          (5) 
 
The second equation is the equality of the horizontal 
forces, for any reference point taken at the founda-
tion: 
 
       (6) 
 

Only one equation remains to make the system de-
terminate. This can be given by any of the two cases 
shown in Figure 2, where either the horizontal dis-
placement (2 a) or the rotation (2 b) of the foundation 
is constrained (u = 0 or θ = 0 respectively). The solu-
tion of the system is given below: 
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The vertical stiffness of the foundation obviously 

remains the same. Thus, with (7) the equations that 
have been derived for the base of the embedded 
foundations can be easily translated to the top of the 
foundation. 
 

 
Figure 2. Sub-cases of Figure 1: (a) imposed rotation at the base 
with constrained displacement and (b) imposed horizontal dis-
placement with constrained rotation. 
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The transformed expressions calculating the stiffness for the reference point at the top of the foundation, according to Gazetas [1991], are: 
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2.2 Elastic Stiffnesses of Circular Flexible Skirted 

Foundations 
 
Having defined suitable expressions for the elastic 
stiffness coefficients of cylindrical solid caissons, the 
second part of the process of deriving expressions for 
skirted foundations is to find a dimensionless param-
eter that will be able to produce unique stiffness val-
ues for differing soil conditions and skirt flexibility. 
The lid of the suction caisson is considered rigid; 
thence, if the skirts have a very small thickness or 
elastic modulus, the foundation will behave like a 
surface footing. 

Similar to the dimensionless parameter J defined by 
Doherty et al. [2005], a new parameter is introduced 
as follows: 
 
          

       
 (12) 

 
where Esteel the elastic modulus for steel (usually 210 
GPa), t the skirt thickness, Esoil Young's modulus for 
the soil and B the foundation diameter. By conduct-
ing several analyses where one of the above parame-
ters was varied while the rest remained constant, it 
was found that indeed unique stiffnesses were de-
fined by the value of   (deviation of 2% at most). 

Also, for very small values of   the stiffness coef-
ficients reduced to those for a surface foundation. 
Conversely, for very large values of  , the stiffness 
coefficients are practically equal (difference of 3-4% 
for large embedment ratios) with those of an equiva-
lent solid embedded foundation. 

The purpose is to elicit a "reduction" factor which 
when multiplied with the stiffness of the solid foun-
dation would yield the stiffness of the equivalent 
skirted foundation. Therefore, the results presented 
are in the form of fractions of the stiffness of the sol-
id foundation in percentile form. The variation of 
these results with   for each type of stiffness is plot-
ted in Figures 3 to 6. 
 

 
Figure 3.  Ratio of the vertical stiffness of a skirted foundation 
over the stiffness of the equivalent solid foundation versus P. 

 

 
Figure 4.  Ratio of  the horizontal stiffness of a skirted foundation 
over the stiffness of the equivalent solid foundation versus P . 
 

It was found that the curves produced can be ap-
proximated by the following function: 
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ing relationships between embedded and skirted 
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skirts are also flexible and the relative position of the 
reference point (with the exception of fully rigid 
skirts) would change depending on the degree of 
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pressions must be the translation of the load refer-
ence point to the top of the foundation, which is rigid 
in all cases. 

In Figure 1, the absolute displacement of the refer-
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ment is shown for small rotations of the solid founda-
tion. 
 

 
Figure 1. Change in absolute displacement and moment if the load 
reference point is taken at the top of the foundation 
 

Below, expressions of the stiffness matrix will be 
used in conjunction with the moment and displace-
ment definitions from Figure 1 to deduce the same 
expressions for a change in the load reference point 
to the top of the foundation. The subscript b denotes 
that the variable refers to the bottom of the founda-
tion, whereas the subscript  t refers to the top. Since 
the vertical stiffness clearly remains the same wher-
ever the reference point is taken, it will not be added 
to the operations below. 
 
             (1) 
             (2) 
           (    ) (3) 
            (    ) (4) 
 

The signs of the cross-coupling stiffness coeffi-
cients have been chosen so as to ensure that the cou-
pling terms will have a positive value. Therefore, 
when referring to the top, when a horizontal force 
acts on it, the foundation tends to rotate and an oppo-
site-direction moment must be applied to resist this 

rotation; thus the coupling term will have a negative 
sign. In the same manner the positive sign was taken 
for the coupling term at the base of the foundation. 
Three additional equations are needed to define the 
horizontal and rocking stiffness coefficients as well 
as the coupling term at the top of the caisson; one 
equation that can help in this transformation is that 
relating the moment at the top (Mt) to the moment 
(Mb) and shear force (Hb) at the bottom of the foun-
dation: 
 
          (5) 
 
The second equation is the equality of the horizontal 
forces, for any reference point taken at the founda-
tion: 
 
       (6) 
 

Only one equation remains to make the system de-
terminate. This can be given by any of the two cases 
shown in Figure 2, where either the horizontal dis-
placement (2 a) or the rotation (2 b) of the foundation 
is constrained (u = 0 or θ = 0 respectively). The solu-
tion of the system is given below: 
 

{
   
   
   

}  {
   

    (         ) 
        

} (7) 

 
The vertical stiffness of the foundation obviously 

remains the same. Thus, with (7) the equations that 
have been derived for the base of the embedded 
foundations can be easily translated to the top of the 
foundation. 
 

 
Figure 2. Sub-cases of Figure 1: (a) imposed rotation at the base 
with constrained displacement and (b) imposed horizontal dis-
placement with constrained rotation. 

u 

θ 

u + Dθ 

D 
M 

H 

H* = H 

M* ≈ M – D H 

θ 

Dθ 

D 

u 

D 

(a) (b) 

M 

H 

M 

H 

M* 

H* 
M* 

H 

The transformed expressions calculating the stiffness for the reference point at the top of the foundation, according to Gazetas [1991], are: 
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bedded foundation. 
       : stiffness of the equivalent rigid skirted 
foundation. 
       is given by multiplying        with the appro-
priate factor from Table 1. 
 

 
Figure 5.  Ratio of  rocking stiffness of a skirted foundation over 
the stiffness of the equivalent solid foundation vs  P. 
  

 
Figure 6. Ratio of  the coupled swaying-rocking stiffness of a 
skirted foundation over the stiffness of the equivalent solid founda-
tion plotted against P. 
 
Table 1.  Reduction factors for        

 Vertical Horizontal Rocking Swayed -
Rocking 

            ⁄  1 -0.04 D/B 1 -0.03 D/B 1 -0.035 D/B 1 -0.04 D/B 

 
 
Table 2  Coefficient Values and maximum Error for Equation (13) 
Stiffness a b c Error 

   0.9 0.5 0.85 1.4% 
   0.3 0.75 0.8 1.8% 
   0.25 1 0.8 3.4% 
   0.2 0.7 0.85 5.6% 

 
It can be considered as a simplification for the em-

bedment values of interest (D/B ≤ 1) that        
      . Table 2 presents the values for factors  ,   

and   for each type of stiffness as well as the maxi-
mum error between (13) and the finite element analy-
sis results. 

3 NONLINEAR STIFFNESS COEFFICIENTS   

3.1 Generalities 

The elastic stiffness coefficients may only be consid-
ered approximately correct in the small-strain do-
main. For large displacements or rotations, geometric 
and material nonlinearities start to affect the response 
of the system and the expressions derived previously 
are no longer applicable. Thus, it is important that the 
behavior of the system be investigated as it enters the 
plastic domain and soil yielding, sliding, detachment 
and even uplift govern its response. 

In order to reduce complexity of this strongly non-
linear problem, the skirts are initially considered rig-
id while "full contact" conditions are assumed at the 
soil-foundation interface. Again, three embedment 
ratios (D/B = 0.2, 0.5 and 1) will be the subjects of 
investigation for this section. Only results for the hor-
izontal, rocking and cross-coupling stiffness coeffi-
cients will be presented. 

3.2 Nonlinear Stiffness for very high FSV  values 

Following Gazetas et al. [2012] recomendation, the 
effective rocking stiffness degradation is defined as a 
function of the intital Factor of Safety against vertical 
loading (FS) and the level of imposed deformation u 
[K(u,FS) ⁄ (K(0,FS)].  In this study the stiffness deg-
radation coefficient is examined only for very high 
factors of safety (i.e. FS ≈ 97) - a quite typical load-
ing condition for offshore wind-turbines. For such 
high values of  FS the K (0, FS) term is practically 
the elastic term defined in the previous paragraph.  

Results are shown for the horizontal and coupled 
swaying-rocking stiffness in Figures 7 and 8. The 
cross-coupling term of Figure 8 has been derived 
from analyses with imposed zero rotation and hori-
zontal displacement to failure. Note that in Figure 7 
the imposed displacement u is divided by the term 
  , (to produce the nondimensional term u/ut) where: 
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 (4.19) 
With this operation all curves (irrespectively of the 

embedment depth of the suction caisson) fall practi-
cally within a unique line (maximum deviation for 
horizontal stiffness less than 2% and for cross-
coupling stiffness less than 7%). The "bumps" pre-
sent in the curves reflect the shaping of new failure 
zones beneath, around and within the skirts as they 
temporarily relieve the ones already formed due to 
excess displacements/rotations. 
 

 
Figure 7.  Dimensionless chart of the reduction in the horizontal 
stiffness with increasing horizontal displacement, under zero rota-
tion and full contact conditions. 
 

 
Figure 8.  Dimensionless chart of the reduction in the coupled 
swaying-rocking stiffness with increasing horizontal displacement, 
under zero rotation and full contact conditions. 
 
 

The same procedure as above is carried out for the 
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placement. Figures 9 and 10 represent dimensionless 
charts where the reduction in the rocking stiffness 
and cross-coupling term with increasing rotation is 
plotted against the angle of rotation normalized by a 
parameter similar to   , namely θt, which is equal to: 
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The reduction in the rocking stiffness seems to be 

exact for all embedment ratios, while for the coupling 
term there seems to be a small variation of up to 6%. 
 

 
Figure 9.  Dimensionless chart of the reduction in the rocking 
stiffness with increasing rotation, for zero displacement and full 
contact conditions. 
 

 
Figure 10.  Dimensionless chart of the reduction in the coupled 
swaying-rocking stiffness  with increasing rotation, for zero dis-
placement and full contact conditions. 
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high values of  FS the K (0, FS) term is practically 
the elastic term defined in the previous paragraph.  

Results are shown for the horizontal and coupled 
swaying-rocking stiffness in Figures 7 and 8. The 
cross-coupling term of Figure 8 has been derived 
from analyses with imposed zero rotation and hori-
zontal displacement to failure. Note that in Figure 7 
the imposed displacement u is divided by the term 
  , (to produce the nondimensional term u/ut) where: 
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 (4.19) 
With this operation all curves (irrespectively of the 

embedment depth of the suction caisson) fall practi-
cally within a unique line (maximum deviation for 
horizontal stiffness less than 2% and for cross-
coupling stiffness less than 7%). The "bumps" pre-
sent in the curves reflect the shaping of new failure 
zones beneath, around and within the skirts as they 
temporarily relieve the ones already formed due to 
excess displacements/rotations. 
 

 
Figure 7.  Dimensionless chart of the reduction in the horizontal 
stiffness with increasing horizontal displacement, under zero rota-
tion and full contact conditions. 
 

 
Figure 8.  Dimensionless chart of the reduction in the coupled 
swaying-rocking stiffness with increasing horizontal displacement, 
under zero rotation and full contact conditions. 
 
 

The same procedure as above is carried out for the 
rocking stiffness and cross-coupling stiffness derived 
from imposed rotation with zero horizontal dis-
placement. Figures 9 and 10 represent dimensionless 
charts where the reduction in the rocking stiffness 
and cross-coupling term with increasing rotation is 
plotted against the angle of rotation normalized by a 
parameter similar to   , namely θt, which is equal to: 
 

   (      (  )
 
) (16) 

 
The reduction in the rocking stiffness seems to be 

exact for all embedment ratios, while for the coupling 
term there seems to be a small variation of up to 6%. 
 

 
Figure 9.  Dimensionless chart of the reduction in the rocking 
stiffness with increasing rotation, for zero displacement and full 
contact conditions. 
 

 
Figure 10.  Dimensionless chart of the reduction in the coupled 
swaying-rocking stiffness  with increasing rotation, for zero dis-
placement and full contact conditions. 

4 CONCLUSIONS 

The stiffness of the soil-foundation system was in-
vestigated both in the elastic domain and when non-
linearities are considered. Expressions from the liter-
ature were used to identify the stiffness matrix of a 
solid embedded foundation with the load reference 
point at its top.  

Following, expressions for the stiffness components 
of flexible skirted foundations were engendered for 
variations in the characteristics of the system normal-
ized by a parameter that produced unique stiffness 
values. These were evaluated with other methodolo-
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gies in the literature and their difference was consid-
ered within reasonable limits. 

The second part of this paper involved the investi-
gation of the stiffness of the system in the large-strain 
domain. Full contact was examined and correspond-
ing charts were produced that showed the reduction 
in the stiffness components with increasing rotations 
and displacements, giving the ability of estimating 
with an iterative procedure the true displacement and 
rotation of the foundation for imposed horizontal and 
moment loading.  
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Flexible retaining structures supported by anchor 
beams: the problem of tie-rod length 

Parois de soutènement flexibles supportées par des rideaux 
d’ancrages: le problème de la longueur de l’ancrage 
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ABSTRACT  The stability of single-anchored flexible retaining structures strongly depends on the anchor force which needs to be applied 
to the wall and supported by the anchor beam. One important issue in the stability is tie-rod length. Tie-rod length is often defined using 
simple mechanical and geometric considerations or using classical global stability methods such as Kranz's method. However, the simplici-
ty of those considerations and the imposed mechanisms in methods such as Kranz's may lead to inaccurate results. In the present paper, a 
finite element implementation of the upper-bound theorem (Sublim3D) is used in determining the minimum length needed to ensure stabil-
ity for different geometries of the wall and of the anchor beam. The obtained mechanisms and tie-rod lengths are analysed and compared 
with those from classical methods. 

RÉSUMÉ  La stabilité des parois de soutènement flexibles supportées par un seul niveau de tirants d’ancrage dépende fortement de la force 
nécessaire d’être appliquée dans la paroi et supportée par le rideau d’ancrage. Un des paramètres clé pour la stabilité est celui de la lon-
gueur de l’ancrage. La longueur de l’ancrage est souvent établie par des considérations mécaniques et géométriques simples, ou par
l’utilisation de méthodes classiques de stabilité globale, comme celui de Kranz. Cependant, la simplicité de ces considérations et les méca-
nismes imposés dans les méthodes comme celle de Kranz peut donner des résultats peu précis. Dans ce travail une implémentation numé-
rique par éléments finis du théorème cinématique (Sublim3D) est utilisée dans la détermination de la longueur minimale de l’ancrage assu-
rant la stabilité pour des différentes géométries de la paroi et du rideau d’ancrage. Des mécanismes et des longueurs d’ancrages obtenus 
sont analysés et comparés avec ceux résultant des méthodes classiques. 
 

1 INTRODUCTION 

Tie-rod length is a fundamental parameter in the sta-
bility of single-anchored retaining walls. In fact, the 
overall stability of this type of structures is strongly 
influenced by this parameter. It is usually determined 
through simple mechanical and geometric considera-
tions and also by the use of classical methods to 
evaluate the overall stability such as Kranz's (1953) 
method. The mechanical and geometric considera-
tions impose that no superposition exists between the 
active wedge behind the wall and the passive wedge 
in front of the anchor (Terzaghi 1943). Results from 
Kranz's method are affected by the fact that a mecha-
nism using planar slip surfaces is imposed. 

The present paper deals with the problem of the 
anchor rod length needed to ensure the overall stabil-
ity of single anchored retaining structures using hori-
zontal tie-rods and vertical beam anchors. This prob-
lem is analyzed using a finite element 
implementation of the upper-bound theorem, Sub-
lim3D (Vicente da Silva & Antão 2008), considering 
different anchor beam geometries as well as different 
strength parameters. 

2 DESCRIPTION OF THE PROBLEM 

The geometry of the case analyzed in this paper is 
presented in Figure 1. The retaining structure has ex-
cavation depth Hexc, embedded depth f and thickness 


